Anterior

Capítulo XXVII: Usos de Historia en la Educación Matemática

Siguiente

27.4 Historia y educación matemática

El hecho de que en los últimos años se haya incrementado la presencia y uso de la historia como un recurso decisivo en la enseñanza de las matemáticas y, en especial, en la formación de los educadores, conduce a pensar que se trata de otro signo del avance de visiones filosóficas que se alejan de los paradigmas dominantes del pasado. Es decir, el desarrollo de una mayor intervención de la historia de las matemáticas en su enseñanza revela la existencia de modificaciones en la percepción que se tiene de la naturaleza de las matemáticas. Hasta dónde esto ha evolucionado es difícil de precisar.

Es, también, previsible que sea precisamente en la enseñanza de las matemáticas donde se busque hacer modificaciones. La educación plantea de una manera práctica la mayoría de los problemas epistemológicos centrales, y exige soluciones concretas (que serán siempre sujetas a la crítica, al error y la corrección). La educación se convierte en un especial factor dinámico en el desarrollo de las reflexiones epistemológicas y filosóficas en general.

No sería extraño entonces pensar en las comunidades de educadores de la matemática como el medio social más adecuado para construir importantes modificaciones en la percepción de la naturaleza de las matemáticas. En este sentido, lo que se podría conceptualizar como "filosofía de la educación matemática'' más que una parte de la filosofía tendría un sentido pragmático integrado a la misma educación matemática.

Es éste precisamente el punto de vista que asume Paul Ernest en un debate, relativamente reciente, con el profesor de filosofía Zheng Yuxin de Nanjin University en China:

"Mi posición es que la filosofía de la educación matemática es primariamente una parte de la educación matemática. Se trata de una perspectiva sobre los problemas y asuntos de la educación matemática, pero que integra y aplica los métodos y conceptos de la filosofía.'' [Ernest, Paul: "In response to professor Zheng''. Philosophy of Mathematics Education Newsletter 7 (February 1994)]

Una nueva visión aceptada de las matemáticas que sustituya los anteriores paradigmas cuestionados no existe todavía. Podría decirse que el primero en introducir una visión crítica del paradigma de las matemáticas como verdades infalibles y siguiendo una estructuración axiomático-deductiva fue Lakatos a finales de los sesenta. [La principal influencia de Lákatos provenía de Popper quien ofrece el falibilismo como una respuesta a lo que llamó doctrinas "justificacionistas'': que establecen una categoría de conocimiento como fuente de autoridad y fundamento de otras o todas las demás (como la lógica, la aritmética, etc.)]

Frente a lo que él llamó un modelo "euclídeo'' de entender las matemáticas, ofreció una visión crítica falibilista de éstas.

Desde entonces se han producido trabajos en esa dirección como los de Davis y Hersh, Kitcher, Tiles y Kline; y es, precisamente, el marco teórico de partida en el que encuentra sustento nuestro análisis. Este llamado a una nueva visión no podría entenderse al margen de la contribución del nuevo "externalismo'' en la historia de la ciencia que afirma una contextualización social y gremial de la evolución de la ciencia con Kuhn, Feyerabend, Toulmin, Lakatos, Laudan y otros.

La asunción de una visión falibilista de las matemáticas tiene varias implicaciones. Ernest resume el asunto así:

"El establecimiento del conocimiento matemático como falible y cuasi empírico significa que las matemáticas no están herméticamente selladas y separadas de otras áreas del conocimiento, la actividad y los valores humanos. Esto significa que en las matemáticas al igual que en las ciencias y otras áreas del conocimiento humano el contexto de descubrimiento y de justificación se penetran mútuamente. Consecuentemente, no se les puede negar a los asuntos sociales, culturales y éticos un impacto sobre las matemáticas y el conocimiento matemático y debe admitirse con un rol esencial y constitutivo en la naturaleza del conocimiento matemático.'' [Ernest, Paul: "In response to professor Zheng''. Philosophy of Mathematics Education Newsletter 7 (Febrero 1994)]

En los congresos internacionales de educación matemática durante los años 80 y en los principales "journals'' de la disciplina lo que se ha llamado constructivismo se ha vuelto persistente. Podríamos decir que los puntos de partida filosóficos de esta tendencia los resume Glasersfeld en dos afirmaciones:

"i-el conocimiento no se recibe pasivamente sino que se construye activamente por el sujeto epistémico, y ii-la función cognoscitiva es adaptativa y sirve a la organización de la experiencia con el mundo y no al descubrimiento de una realidad ontológica.'' [Glaserfeld, E. von. "Constructivism in Education'' en la obra editada por Huse, T. y Postlethwaite, T. N. The international Encyclopedia of Education Suplementary Volume, Oxford: Pergamon Press, 1989, p. 162.]

Existe influencia de Piaget en este tipo de visión.

Ahora bien, del "falibilismo'' en la filosofía de las matemáticas al constructivismo en la educación matemática, pareciera que hay sólo un paso puesto que si se asume que una práctica cognoscitiva es falible, es muy comprensible considerarla como producto de la creación humana y su construcción, pero el asunto no es tan sencillo.

El constructivismo enfatiza el papel del sujeto en el aprendizaje y establece una relación sujeto-objeto a partir de éste, pero alguien bien podría plantear estos procesos constructivistas en la búsqueda de verdades intemporales de las matemáticas. Ya lo hemos sugerido antes: puede darse un constructivismo desprovisto de contenido material y en donde la relación con el resto del conocimiento -al que se refiere Ernest- se da sólo por la acción del sujeto como en Kant.

La realidad, sin embargo, es que la palabra "constructivismo'' ha sido como un paraguas donde se han cobijado muchas posiciones filosóficas: es decir, salvo por la referencia general a los métodos constructivos, no es posible un examen serio sin realizar análisis precisos sobre estas nuevas corrientes. Sin embargo, de manera general, la visión que ha predominado hasta ahora en las nuevas tendencias de la enseñanza de las matemáticas ha asumido una visión epistemológica constructivista en general pero ha procurado no adoptar un punto de partida ontológico que, por ejemplo y en particular, interprete de una nueva manera el carácter empírico de las matemáticas.

También se ha dado una tendencia que se puede llamar socioculturalista que afirma los aspectos sociales en la construcción cognoscitiva.

"En la visión sociocultural se asume un individuo que está inmerso en un medio social y cultural que es decisivo para la práctica educativa, que influencia y determina hasta cierto punto las condiciones de esa práctica. Es claro que una de las tradiciones ideológicas y filosóficas que más ha puesto en relevancia el papel de lo social y cultural en el conocimiento es el marxismo. Para el marxismo la ciencia y el conocimiento deben estudiarse como fenómenos sociales, y las condiciones sociales (normalmente las macrovariables) terminan determinando el curso de la práctica científica. Por ejemplo, en la disciplina de la Historia de la Ciencia fueron intelectuales de corte marxista los que más influencia tuvieron en las primeras fases del llamado Externalismo en los años 30. Por eso no resulta extraño que muchas ideas que se han usado en esta corriente socioculturalista en la reciente educación matemática posean la influencia del soviético Vygotsky así como de otros teóricos (como V. V. Davydov , A. N. Leontev , y Galperin ).'' [Ruiz, A.: El desafío de las matemáticas, p. 79]

El escenario intelectual se puede resumir así:

"Es interesante señalar que, precisamente, ya en los últimos años y de cara al nuevo milenio, por razones que convendría explicar en otra parte, crece una tendencia en la comunidad internacional de educadores de las matemáticas a buscar un plano de convergencia entre las dos principales tendencias metodológicas en la epistemología de la enseñanza-aprendizaje de las matemáticas. Más son los constructivistas que acuden a la presencia de lo social y más los socioculturalistas que aceptan la participación activa del individuo en los procesos cognoscitivos. Y en las filas del constructivismo se llega a afirmar que el individuo (en su accionar) no solo construye las nociones como autoorganización sino que, también, las recibe por el influjo del maestro y del entorno en el que se desarrolla la práctica educativa: no hay solo autoconstrucción cognoscitiva sino, también, influjo social y cultural. Existe una dirección hacia una visión más integrada de la dimensión activa del sujeto, la acción de lo social y cultural y del objeto material externo en el conocimiento y el aprendizaje''. [Ruiz, A.: El desafío de las matemáticas, p. ]

Aunque las nuevas tendencias en la Educación Matemática favorecen un mejor aprovechamiento intelectual y formativo de la historia, todavía es necesario empujar hacia un mayor énfasis de la contextualización histórica, social y cultural, y empírica de la naturaleza de las matemáticas y su enseñanza.

 


Anterior
Subir
Siguiente

Indice Principal
Biografías
Página de Angel Ruiz